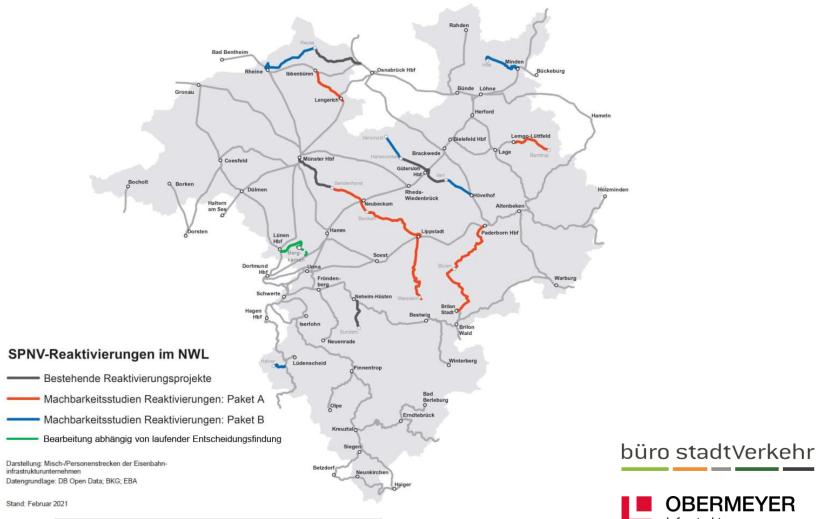


# Aufbau und Nutzung eines regionalen Verkehrsmodells für 11 Reaktivierungsprojekte in Westfalen-Lippe










### Reaktivierungsprojekte im NWL



### Streckenreaktivierungen und Machbarkeitsstudien im NWL





### Reaktivierungsprojekte im NWL



### **Machbarkeitsstudie**



GERTZ GUTSCHE RÜMENAPP optimising railways Stadtentwicklung und Mobilität



### Bestandteile Verkehrliche Aufgabenstellung:

#### Entwickeln von Betriebskonzepten

- Taktung
- Fahrzeiten
- Ziel-Geschwindigkeiten
- Anschluss-/Umsteigesituation in den Knoten
- Wendezeiten
- Fahrzeugbedarf & Zugkilometer
- Berücksichtigung des Güterverkehrs

#### Ermittlung des Infrastrukturbedarfs

- erforderlicher Infrastrukturausbau zur Fahrbarkeit der Konzepte

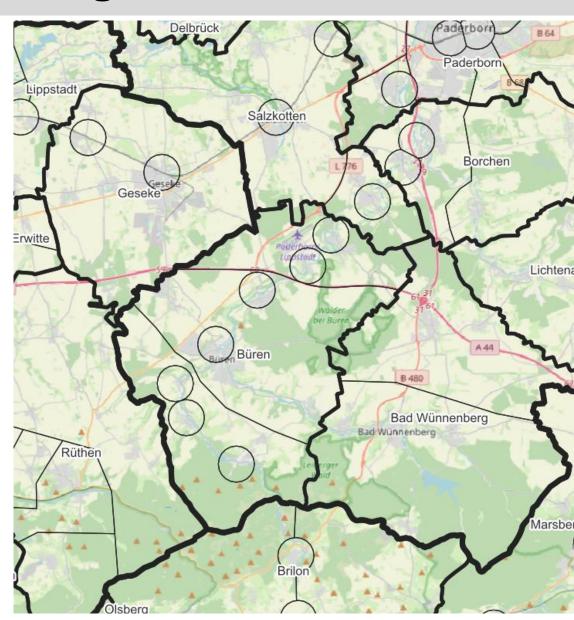
#### Bestandteile Machbarkeitsstudie:

#### Technische Machbarkeit

- Identifizierung aller baulich erforderlichen Maßnahmen
- Grobkalkulation der Investitionskosten

#### Verkehrliche Wirkung und Nachfrage

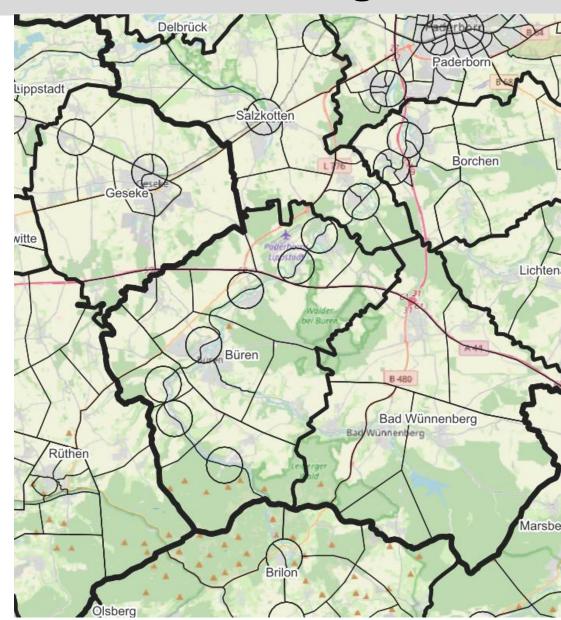
- Berechnung der Nachfrageszenarien der Planfälle unter Berücksichtigung von Neuverkehren/verlagerten Verkehren


#### Standardisierte Bewertung

- Gegenüberstellung der o.g. Punkte zur Berechnung eines Nutzen-Kosten-Faktors (je Planfall)
- → gesamthafte Prüfung, ob Varianten grob betrachtet technisch realisierbar und volkswirtschaftlich sinnvoll sind (Nutzen-Kosten-Faktor > 1,0)



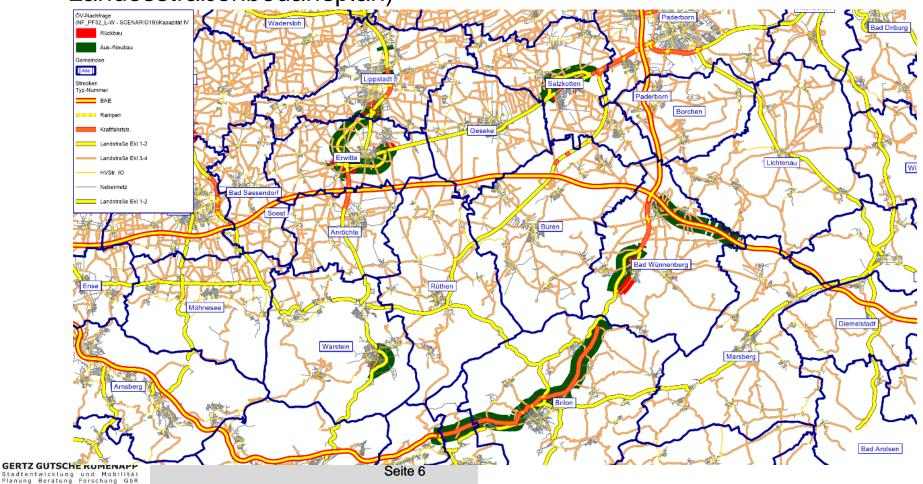
# Verkehrszellen regionales Modell


- Gesamtmodell für alle
   Strecken hätte > 3.000
   Verkehrszellen
  - VISUM-Lizenzgrößenbeschränkung
  - Arbeitsspeicher und Rechenzeiten steigen quadratisch mit der Anzahl der Verkehrszellen
  - Zu Projektbeginn noch nicht alle Strecken und Haltepunkte klar
- → "Grobes"Gesamtmodell





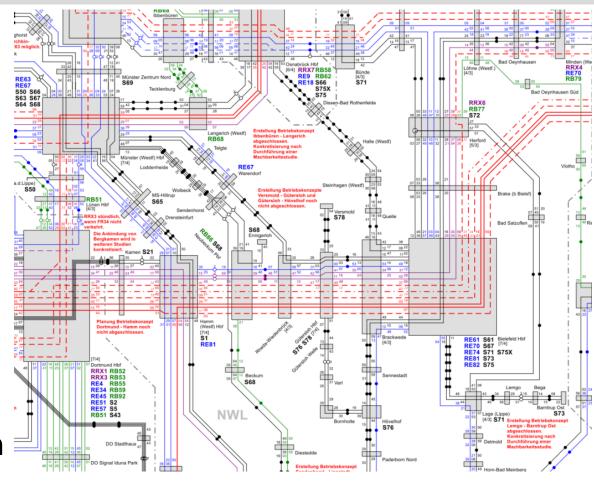
### Verkehrszellen mit Verfeinerungen


- Gesamtmodell für alle Strecken hätte > 3.000 Verkehrszellen
  - VISUM-Lizenzgrößenbeschränkung
  - Arbeitsspeicher und Rechenzeiten steigen quadratisch mit der Anzahl der Verkehrszellen
  - Zu Projektbeginn noch nicht alle Strecken und Haltepunkte klar
- → "Grobes"
   Gesamtmodell mit
   streckenspezifischen
   Verfeinerungen





### Gesamtmodell: Netze


- IV-Netzmodell aus OSM (klassifiziertes Straßennetz + alle Straßen mit Busverkehr)
- Geplante Straßen für Prognosenullfall 2040 (BVWP, Landesstraßenbedarfsplan)





### Gesamtmodell: Zellen + Netze

- ÖV-Analysefall: GTFS-Fahrplandaten
- ÖV-Prognose-Nullfall:
  - Zielnetze 2032
     und 2040 des
     ITF NRW
     ohne die zu
     untersuchenden
     Strecken





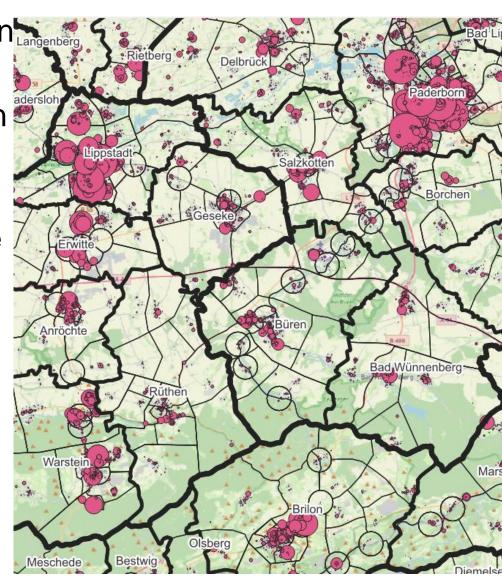
### Gesamtmodell: Personengruppen

### Bevölkerung

- Zensusdaten: Kleinräumige Einwohnerdaten
- Einwohner-Prognose nach Altersklassen von IT.NRW auf Gemeindeebene
- Im Umfeld der Strecken:
   Geplante Baugebiete (FNP/B-Pläne der Gemeinden)
- Personengruppenmodell:
   Personengruppen nach Haupttätigkeit und Pkw-Verfügbarkeit unter Berücksichtigung von gemeindespezifischen Daten zu Erwerbstätigkeit (Regionalstatistik) und Pkw-Besitz (KBA-Daten)



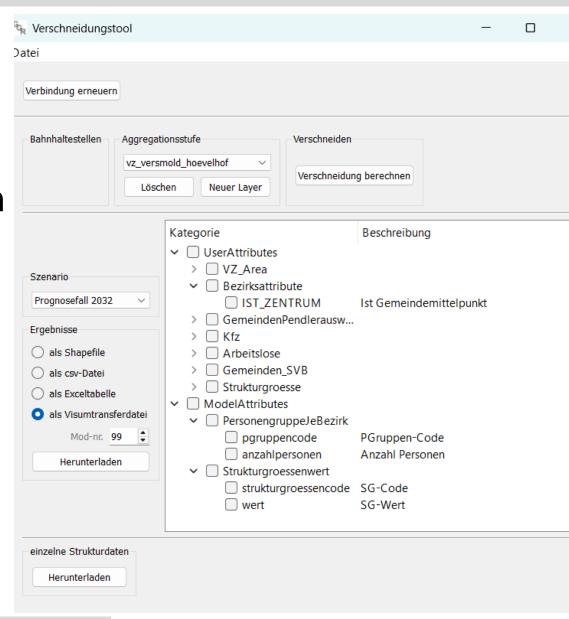
### Gesamtmodell: Zielpotenziale


- NRW mit sehr umfangreichen Open-Data-Angebot
  - Bildung (Schulen, Kitas etc.) mit Plätzen
  - Hochschulen: manuelle Recherche von Standorten erforderlich
  - Einzelhandel: OSM sowie kommerziell erworbene Daten zu Einzelhandel/Freizeit (nexiga+tradedimensions)
  - Erledigungen: OSM
  - Arbeitsplätze:
  - Randsummen auf Gemeindeebene
  - Kleinräumige Verteilung auf Basis ALKIS-Gebäudedaten
  - → Gebäudenutzung und Geschossfläche: Abschätzung der Beschäftigtenzahl je Gebäude



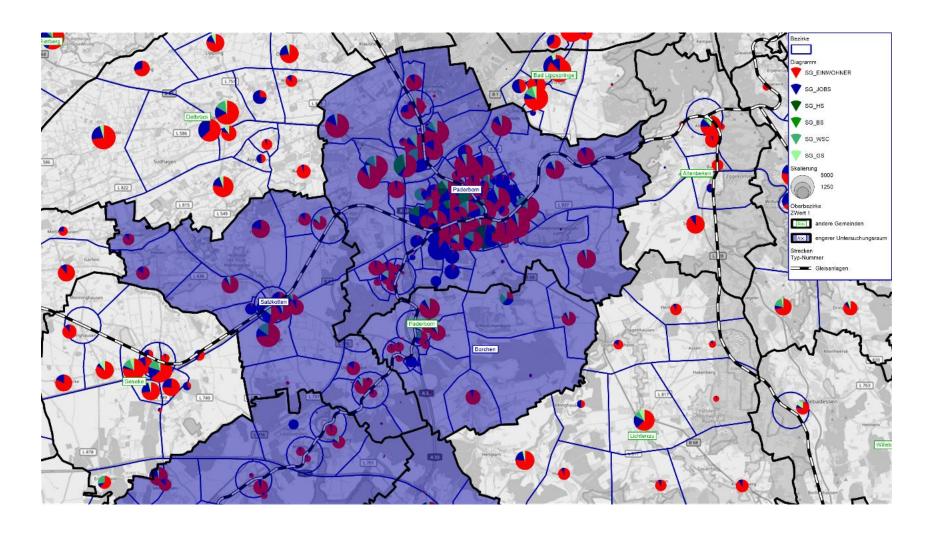
### Strukturdaten in PostGIS-Datenbank

• als Punkte und Flächen


- Verkehrszelleneinteilung für jede Strecke in PostGIS
- Räumliche Verschneidung Punkte und Flächen mit Verkehrszellen
- Aggregation auf Verkehrszellenebene
- Zuspielung weiterer Attribute für Standi






### Verschneidungstool

Entwickelt für die Region Hannover Export als VISUM-Modifikationsdateien (.tra-Datei)

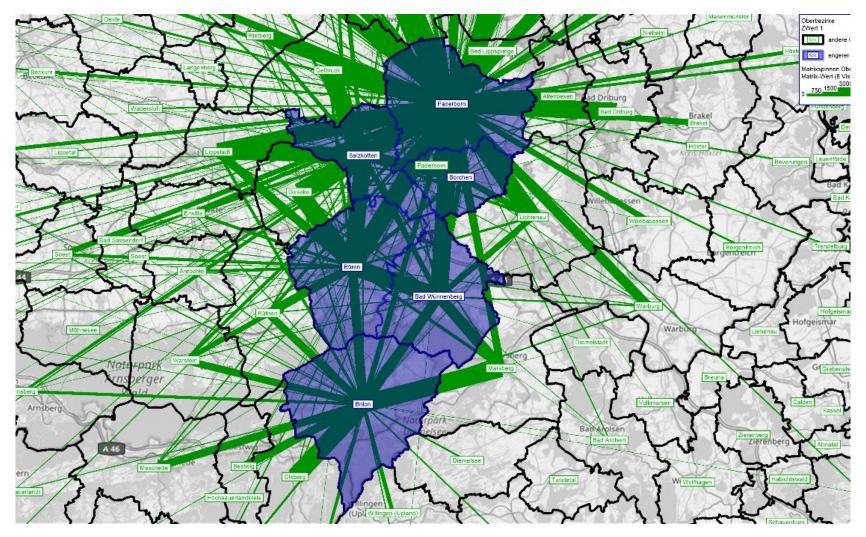




# Strukturdaten in VISUM






### Verfeinerung von Verkehrszellen

- Weitere Arbeitsschritte
  - Verkehrszellen teilen
    - Neue Verkehrszellen (Namen + Nummer vergeben)
    - Alte Verkehrszellen löschen
  - Anbindungen im IV erzeugen
    - Automatisiert im GIS: Anbindung an ausgewählte Knoten, gewichtete Mehrfachanbindungen
  - Import neuer Verkehrszellen nach VISUM
  - Anbindung an alle Haltestellen im Umfeld
    - Prüfung, welche Haltestellen keine zusätzlichen Linienrouten erreichen
    - Löschung unnötiger Anbindungen
  - Kalibrierung (Radanteil Sauerland vs. Münsterland)



# Gesamtverkehrsverflechtungen

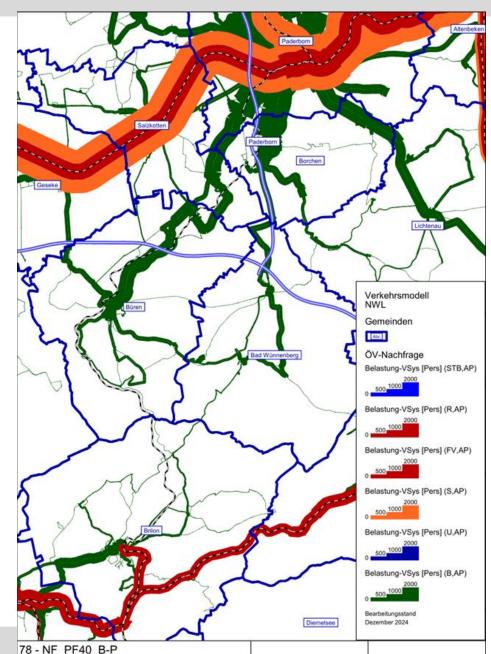
### Strecke Brilon-Paderborn





# **Strukturdatenprognose**

Strecke Brilon-Paderborn

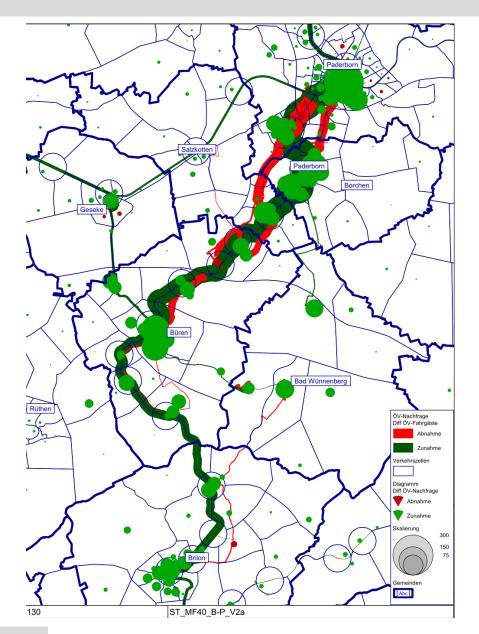





# ÖV-Nachfrage Ohnefall

### Strecke Brilon-Paderborn

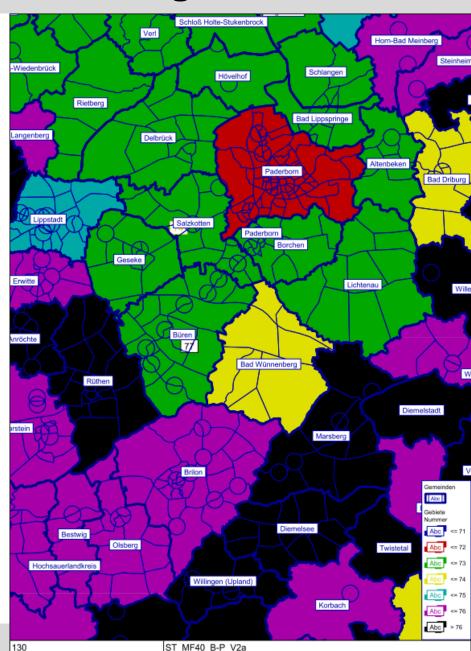
Mit geplanter S-Bahn OWL und weiteren Taktverdichtungen im Bestandsnetz






# ÖV-Nachfrage Mitfall vs. Ohnefall

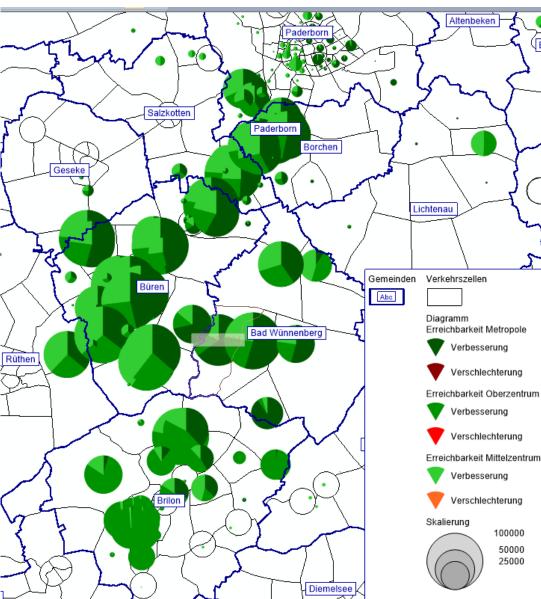
### Strecke Brilon-Paderborn


- Verlagerungen von Bus auf Bahn
- Verlagerte Verkehre vom MIV
- Induzierter Verkehr





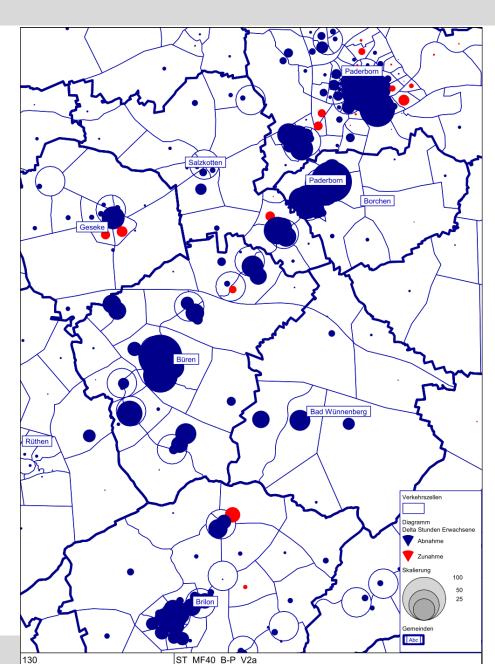
### Nutzwertanalytische Bewertungskriterien


- Funktionsfähigkeit der Verkehrssysteme/ Flächenbedarf
  - Anteil der Fahrleistung nach Gebietstypen:
  - BBSR-Raumtypen als Gebiete in VISUM
  - Berechnung über Gebietskennzahlen



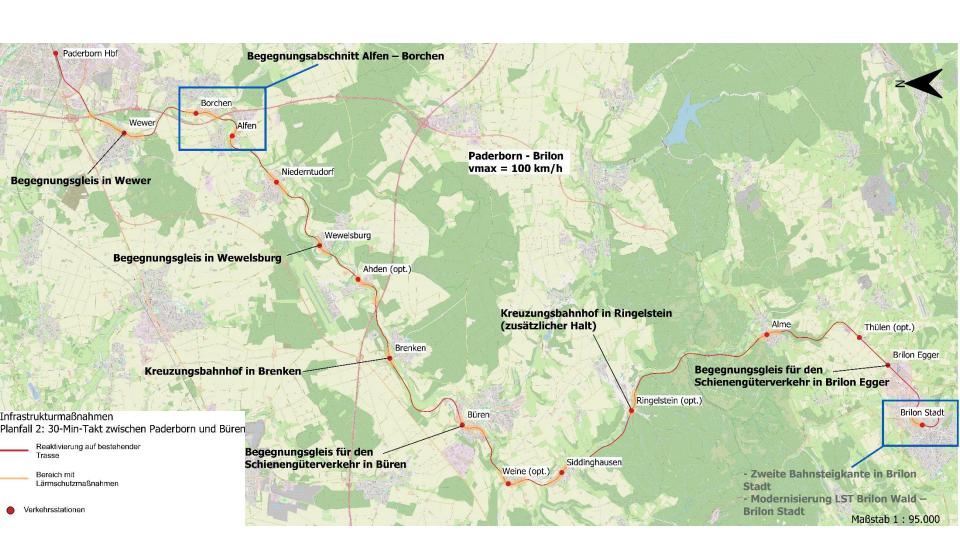


# Daseinsvorsorge/ Raumordnerische Aspekte


- Reisewiderstand zwischen allen Verkehrszellen und nächstgelegenen zentralen Orten
- → Zuordnung aller Verkehrszellen zum BBSR-Raumtypen
- → Definition der Verkehrszelle, die Zentrum des zentralen Orts darstellt






### Fahrgastnutzen: Reisewiderstandsersparnisse

- Visualisierung der Indikatoren in VISUM hilft, Angebotskonzepte zu optimieren
- Buszubringerkonzepte
- Infrastruktur +
   Betriebskonzepte im
   SPNV





### Infrastrukturbedarf und -kosten





# Die Zahl, auf die immer alle warten...

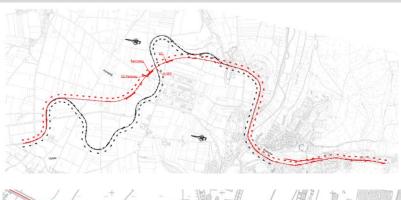
| Reaktivierung Brilon - Paderborn                            |            |                |                |
|-------------------------------------------------------------|------------|----------------|----------------|
|                                                             |            | ST_MF40_B-P_V1 | ST_MF40_B-P_V2 |
| Saldo Fahrgastnutzen                                        | Tsd. EUR/a | 2.959          | 3.364          |
| Saldo ÖPNV-Fahrgeld                                         | Tsd. EUR/a | 5.027          | 5.433          |
| Saldo ÖPNV-Betriebskosten (SPNV)                            | Tsd. EUR/a | -2.330         | -3.358         |
| Saldo ÖPNV-Betriebskosten (Bus)                             | Tsd. EUR/a | 408            | 408            |
| Unterhaltung ortsfeste Infrastruktur Mitfall                | Tsd. EUR/a | -1.207         | -1.280         |
| Unterhaltung ortsfeste Infrastruktur Ohnefall               |            | 0              | 0              |
| Saldo Unfallkosten                                          | Tsd. EUR/a | 2.101          | 2.200          |
| Saldo CO2-Emissionen                                        | Tsd. EUR/a | 2.376          | 2.580          |
| Saldo Schadstoffemissionen                                  | Tsd. EUR/a | 111            | 119            |
| Saldo Geräuschbelastungen                                   | Tsd. EUR/a |                |                |
| Nutzen gesellschaftlich auferlegter Investitionskos-<br>ten | Tsd. EUR/a | 115            | 117            |
| Nutzen anderer Netznutzer                                   | Tsd. EUR/a |                |                |
| Funktionsfähigkeit der Verkehrssysteme                      | Tsd. EUR/a | 623            | 712            |
| Primärenergieverbrauch                                      | Tsd. EUR/a | 535            | 540            |
| Daseinsvorsorge                                             | Tsd. EUR/a | 2.739          | 2.946          |
| Summe monetär bewerteter Einzelnutzen                       | Tsd. EUR/a | 13.456         | 13.781         |
| Kapitalkosten Infrastruktur Mitfall                         | Tsd. EUR/a | 8.171          | 8.436          |
| Kapitalkosten Infrastruktur Ohnefall                        |            | 0              | 0              |
| Saldo Kapitalkosten für die ortsfeste Infrastruktur         |            | 8.171          | 8.436          |
| NKI-Wert mit 30%-Kostensteigerung Infrastruk-<br>tur        |            | 1,6            | 1,6            |

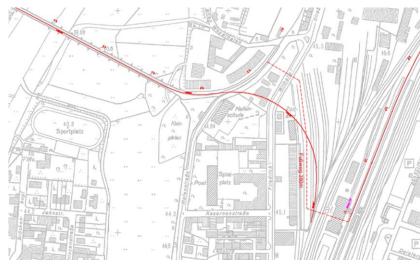


### Zwischenfazit aus 9 von 12 NKUs

- S-Bahn-Netze im Umfeld der Regiopolen (S-Bahn Münsterland und S-Bahn OWL) mit hohen Nachfragepotenzialen
- Betriebskonzepte: 30-Min-Takt schneidet beim NKI in der Regel besser ab als 60-Min-Takt
  - Deutliche Verkürzung Reisewiderstand durch geringere Startwartezeit
  - Zusätzliche Investitionen in die Strecke oft überschaubar
  - Mehrnachfrage muss Betriebskosten decken
- Hohe Bedeutung der Betriebskonzepte (Optimierung von Umsteigezeiten, Umläufen, Busparallel- und Zubringerverkehr)




### Zwischenfazit aus 9 von 12 NKUs


- Indikatoren "Flächenverbrauch" und "Daseinsvorsorge" der Standi 2016+ bringen im ländlichen Raum sehr hohen Nutzenbeitrag
  - Vereinfachtes Verfahren berücksichtigt diese Indikatoren nicht
- Verlagerte Fahrten auf Relationen mit langen Reiseweiten bringen besonders hohen Nutzen (CO2 etc.), auch wenn der Großteil der Fahrgäste auf kürzeren Reiseweiten unterwegs ist.
  - Gesamtnachfrage mit Arbeits-, Ausbildungs-, Erledigungs- und Freizeitverkehr erforderlich



### Zwischenfazit aus 9 von 12 NKUs

- Nicht nur auf historische Bestandsinfrastruktur schauen, oft Iohnen sich kleinere Neu- und Ausbauabschnitte aus NKI-Sicht,
- Eisenbahnkreuzungsgesetz stellt große Hürde dar, wenn Strecken abgebaut sind (nur noch planfreie Kreuzungen, innerorts oft nur mit sehr hohem Aufwand (Troglage etc.) herstellbar).
- Mehr Flexibilität bei Nebenbahnen bei Geschwindigkeiten <= 80 km/h wünschenswert.







# Vielen Dank für die Aufmerksamkeit



Fotos: NWL

**Dipl.-Ing. Max Bohnet** 

E-Mail: bohnet@ggr-planung.de

030 / 4036695-33

**GERTZ GUTSCHE RÜMENAPP** 

Stadtentwicklung und Mobilität Planung Beratung Forschung GbR

Gertz Gutsche Rümenapp Stadtentwicklung und Mobilität GbR

Büro Berlin Johann-Georg-Straße 17 -10709 Berlin

Büro Hamburg Ruhrstraße 11 – 22761 Hamburg

Büro Köln Communa7 Osterather Straße 7 -50739 Köln **Hugo Castro M.Sc.** 

E-Mail: castro@ggr-planung.de

030 / 4036695-36

Ben-Thure von Lueder M.Sc.

E-Mail: von.lueder@ggr-planung.de

040 / 853737-62